

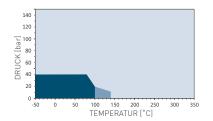
EIGENSCHAFTEN

ANWENDUNGSGEBIETE

ALLGEMEINE INDUSTRIE

WASSERVERSORGUNG

SCHIFFBAU


Materialzusammensetzung	Zellulosefasern, anorganische Füllstoffe, NBR Optional auf Nachfrage auch mit Stahlgewebeverstärkung
Farbe	Pink / Rot
Zulassungen	Auf Nachfrage

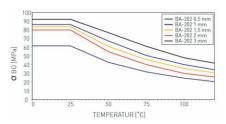
TECHNISCHE DATEN Modalwerte für 2 mm

Dichte	DIN 28090-2	g/cm³	1,8
Zusammendrückung	ASTM F36J	%	9
Rückfederung	ASTM F36J	%	60
Zugfestigkeit	ASTM F152	MPa	8
Druckstandfestigkeit	DIN 52913		
50 Mpa, 16 h, 175 °C		MPa	20
50 Mpa, 16 h, 300 °C		MPa	/
Spezifische Leckage	DIN 3535-6	mg/(s·m)	0,04
Dickenzunahme	ASTM F146		
Oil IRM 903, 150°C, 5 h		%	10
ASTM Fuel B, 23°C, 5 h		%	10
Kompressionsmodul	DIN 28090-2		
Kaltstauchwert: $\epsilon_{ ext{ iny KSW}}$		%	/
Warmsetzwert: ε _{WSW/200°C}		%	/
Rückverformung	DIN 28090-2		
Kaltrückverformungswert: ϵ_{KRW}		%	/
Warmrückverformungswert: ε _{WRW/200°C}		%	/
Einsatzgrenzen			
Kurzzeitig		°C/°F	180/356
Kontinuierlich		°C/°F	140/284
- im Damfp		°C/°F	120/248
Druck		bar/psi	40/580

P-T DIAGRAMM

EN 1514-1, Type IBC, PN 40, DIN 28091-2 / 3.8, 2,0 mm

- Generelle Eignung unter Beachtung der üblichen Einbaubedingungen und der Werkstoffeignung
- Bedingte Eignung Geeignete Ma
 ßnahmen gewährleisten maximale Leistung f
 ür die Verbindungskonstruktion und den Einbau der Dichtung. Technische Beratung wird empfohlen.
- Begrenzte Eignung nach Rücksprache und anwendungstechnischer Beratung


Oberflächenfinish	Standard: 2AS. Optional: Graphit oder PTFE auf Anfrage
Standardabmessungen	Plattenabmessungen (mm): 1500 x 1500 3000 x 1500 4500 x 1500 Dicke [mm]: 0,5 1,0 1,5 2,0 3,0 Weitere Abmessungen auf Nachfrage
Toleranzen	Länge und Breite: ± 5% Dicke bis 1,0 mm: ± 0,1 mm DIN 28091-1 Dicke über 1,0 mm: ± 10 % DIN 28091-1

Acetamide	+	Dioxane	_
Acetic acid, 10%	+	Diphyl (Dowtherm A)	+
Acetic acid, 100% [Glacial]	0	Esters	0
Acetone	0	Ethane (gas)	+
Acetonitrile		Ethers	0
Acetylene (gas)	+	Ethyl acetate	0
Acid chlorides		Ethyl alcohol (Ethanol)	+
Acrylic acid		Ethyl cellulose	0
Acrylonitrile		Ethyl chloride (gas)	_
Adipic acid	+	Ethylene (gas)	+
Air (gas)	+	Ethylene glycol	+
Aldehydes	•	Formaldehyde (Formalin)	0
Alum	+	Formamide	0
Aluminium acetate	0	Formic acid, 10%	0
Aluminium chlorate	0	Formic acid, 85%	_
Aluminium chloride		Formic acid, 100%	-
Aluminium sulfate		Freon-12 (R-12)	+
Amines		Freon-134a (R-134a)	+
Ammonia (gas)		Freon-22 (R-22)	•
Ammonium bicarbonate	+	Fruit juices Fuel oil	+
Ammonium chloride	•		+
Ammonium hydroxide	0	Gasoline	+
Amyl acetate	-	Glycoring (Glycorol)	+
Anhydrides Aniline	+	Glycerine (Glycerol) Glycols	+
Anisole	0	Helium (gas)	+
	+	Heptane	
Argon (gas) Asphalt	+	Hydraulic oil (Glycol based)	+
Barium chloride	+	Hydraulic oil (Mineral type)	+
Benzaldehyde		Hydraulic oil (Phosphate ester based)	0
Benzene	+	Hydrazine	_
Benzoic acid	0	Hydrochloric acid, 10%	_
Bio-diesel	+	Hydrochloric acid, 37%	_
Bio-ethanol	+	Hydrofluoric acid, 10%	_
Black liquor	0	Hydrofluoric acid, 48%	_
Borax	+	Hydrogen (gas)	+
Boric acid	+	Iron sulfate	+
Butadiene (gas)	+	Isobutane (gas)	+
Butane (gas)	+	Isooctane	+
Butyl alcohol (Butanol)	+	Isoprene	+
Butyric acid	0	Isopropyl alcohol (Isopropanol)	+
Calcium chloride	+	Kerosene	+
Calcium hydroxide	+	Ketones	0
Carbon dioxide (gas)	+	Lactic acid	0
Carbon monoxide (gas)	+	Lead acetate	0
Cellosolve	0	Lead arsenate	+
Chlorine (gas)	-	Magnesium sulfate	+
Chlorine (in water)	+	Maleic acid	0
Chlorobenzene	0	Malic acid	0
Chloroform		Methane (gas)	+
Chloroprene	0	Methyl alcohol (Methanol)	+
Chlorosilanes	-	Methyl chloride (gas)	0
Chromic acid	-	Methylene dichloride	0
Citric acid	0	Methyl ethyl ketone (MEK)	0
Copper acetate	+	N-Methyl-pyrrolidone (NMP)	0
Copper sulfate	+	Milk	+
Creosote	0	Mineral oil (ASTM no.1)	+
Cresols (Cresylic acid)		Motor oil	+
Cyclohexane	+	Naphtha	+
Cyclohexanol	+	Nitric acid, 10%	-
Cyclohexanone	0	Nitric acid, 65%	-
Decalin	+	Nitrobenzene	-
Dextrin	+	Nitrogen (gas)	+
Dibenzyl ether	0	Nitrous gases (NOx)	0
Dibutyl phthalate	0	Octane	+
		Logicite	
Dimethylacetamide (DMA)	0	Oils (Essential)	+

Oleic acid	+
Oleum (Sulfuric acid, fuming)	-
Oxalic acid	0
Oxygen (gas)	-
Palmitic acid	+
Paraffin oil	+
Pentane Perchloroethylene	+
Petroleum (Crude oil)	+
Phenol (Carbolic acid)	-
Phosphoric acid, 40%	-
Phosphoric acid, 85%	-
Phthalic acid	+
Potassium acetate	+
Potassium bicarbonate	+
Potassium carbonate	+
Potassium chloride	+
Potassium cyanide Potassium dichromate	+
Potassium hydroxide	-
Potassium iodide	+
Potassium nitrate	+
Potassium permanganate	-
Propane (gas)	+
Propylene (gas)	+
Pyridine	-
Salicylic acid	0
Seawater/brine Silicones (oil/grease)	+
Soaps Soaps	+
Sodium aluminate	0
Sodium bicarbonate	+
Sodium bisulfite	0
Sodium carbonate	+
Sodium chloride	+
Sodium cyanide	+
Sodium hydroxide	-
Sodium hypochlorite (Bleach)	Ι-
Sodium silicate (Water glass) Sodium sulfate	+
Sodium sulfide	Ť
Starch	+
Steam	0
Stearic acid	+
Styrene	0
Sugars	+
Sulfur	0
Sulfur dioxide (gas)	0
Sulfuric acid, 20% Sulfuric acid, 98%	H
Sulfuryl chloride	E
Tar	
Tartaric acid	0
Tetrahydrofuran (THF)	-
Titanium tetrachloride	-
Toluene	+
2,4-Toluenediisocyanate	0
Transformer oil (Mineral type)	+
Trichloroethylene	-
Vinegar	+
Vinyl chloride (gas) Vinylidene chloride	H
Water	+
White spirits	+
Xylenes	+
Vulonal	

σ_{B0} DIAGRAMM

DIN 28090-1

$\sigma_{B0} \text{Diagramm}$

 σ_{BO} -Werte sind abhängig von der Materialdicke. Diese Werte geben die maximale tolerierbare Flächenpressung für die unterschiedlichen Materialdicken in Abhängigkeit der Betriebstemperatur an.

Ein **P-T Diagramm** zeigt welcher Maximaldruck und welche Maximaltemperatur in Abhängigkeit der Dichtungsgeometrie und Dichtheitsklasse zulässig ist. Bei der Vielzahl der möglichen Einsatzfälle und Installationsbedingungen können die Werte jedoch nur als Richtlinie für die optimale Dichtungsauswahl dienen. Generell zeigen dünne Dichtungen einen günstigeren Verlauf im P-T Diagramm.

LISTE DER CHEMISCHEN BESTÄNDIGKEITEN

Die hier angegebenen Empfehlungen stellen lediglich eine Richtlinie für die richtige Auswahl des Dichtungswerkstoffes dar. Aufgrund der Vielzahl von Anwendungs- und Einsatzbedingungen können hieraus jedoch keine Garantieansprüche abgeleitet werden. Diese Liste stellt lediglich eine Auswahl dar und erhebt keinen Anspruch auf Vollständigkeit.

Legende:

- Beständig
- Eingeschränkte Beständigkeit in Abhängigkeit der Anwendungsbedingungen
- Nicht beständig

Donit Tesnit GmbH

Sckellstrasse 1/II D-81667 München Phone: +49 160 92380498

www.donit.eu webstore.donit.eu donpro.donit.eu

Hauptsitz DONIT TESNIT, d.o.o.

Cesta komandanta Staneta 38 1215 Medvode, Slovenia, EU

Phone: +386 [0]1 582 33 00 Fax: +386 [0]1 582 32 06 +386 [0]1 582 32 08

Für Haftungsausschluss besuchen Sie bitte http://donit.eu/disclaimer Copyright © DONIT TESNIT, d.o.o. All rights reserved Date of issue: 06.2020 / TDS-BA202-GER-06-2020

Alle angegebenen Informationen und Daten basieren auf jahrzehntelanger Erfahrung in der Herstellung und Verwendung von Dichtungselementen. Diese Daten dürfen nicht zur Unterstützung von Gewährleistungsansprüchen verwendet werden. Mit ihrer Veröffentlichung ersetzt diese neueste Ausgabe alle früheren Ausgaben und kann ohne weitere Ankündigung geandert werden.

★ Zinc sulfate

Oils (Vegetable)

Dimethylformamide (DMF)